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Abstract. Reflection of thermal atoms by a pulsed standing wave with a duration in the nanosecond range
is studied. The momentum distribution of the reflected atoms is determined by calculations based on the
adiabatic atom-photon interactions. It is shown that with a proper choice of the field intensity and the pulse
duration the standing-wave pattern functions as a row of independent atom mirrors. At an optimum choice
of the parameter values, the fraction of the elastically reflected atoms is more than 20%. Furthermore, we
show that the pulsed standing-wave mirror can be used to manipulate their final momentum distribution.
When using laser pulses with an intensity of several tens of MW/cm2, tens of thousands of atoms can be
reflected by a single laser pulse.

PACS. 32.80.Lg Mechanical effects of light on atoms, molecules, and ions

1 Introduction

The use of light forces in reflecting neutral atoms has been
studied intensively during the past decade [1–3]. It has
been shown both theoretically and experimentally that in
a near-resonant interaction, coherent reflection of neutral
atoms can be achieved by using the dipole forces exerted
on the atoms in an inhomogeneous optical field. This has
lead to the invention of several types of atom mirrors, in-
cluding the evanescent-wave mirror formed in total inter-
nal reflection of light on a vacuum-dielectric interface [4–6]
as well as various types of mirrors based on focused light
fields such as the doughnut-mode optical field [7]. More
recently, it has also been proposed that a standing wave
could be used as a periodic reflector for matter waves in
analogy to the dielectric multi-layer mirrors used in clas-
sical optics [8–10]. Atom mirrors that are based on light
forces are presently widely used in various application of
atom optics, e.g., in confining neutral atoms into gravita-
tional cavities [7,11], as atomic wave guides [12,13] or as
mirrors in atom interferometers [14,15].

Commonly, atom mirrors are realized using
continuous-wave (CW) lasers as the light source.
Due to the relatively low field intensities available from
the wavelength-tunable CW lasers the reflectivity of
conventional atom mirrors rapidly decreases for atomic
velocities on the order of a meter per second or higher.
This velocity limit may be increased somewhat by
applying field enhancement techniques such as the sur-
face plasmon effect or optical build-up cavities [16–19].
These techniques are, however, far too ineffective for the
reflection of atoms with velocities in the thermal range.
The use of the conventional atom mirrors is then limited
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to grazing incidence reflection of atomic beams or to the
control of initially laser cooled atoms. Furthermore, since
the magnitude of the light forces at low field intensities is
very sensitive to the internal energy-level structure of the
atom, the conventional atom mirrors are suitable for the
reflection of some particular atomic species only.

In this work, we study the use of a pulsed standing
wave with a duration in the nanosecond range for the re-
flection of thermal atoms. When using a pulsed laser as
the light source, the field intensity can be increased by
several orders of magnitude as compared to the case of a
typical CW laser. Due to the increased field strength the
dipole forces become strong enough to significantly affect
the atomic motion up to velocities of several tens of me-
ters per second. This allows large angle reflection of atomic
beams or even reflection of thermal atoms at normal inci-
dence. Also, in the case of pulsed fields the dipole forces
experienced by the particles remain strong even at large
detunings from the atomic resonance. Pulsed atom mirrors
will not, therefore, be sensitive to the internal energy-level
structure of the atom. Consequently, atom optical com-
ponents based on pulsed laser fields are useful also for
the manipulation of multilevel atoms and even molecules
[20–23].

The use of pulsed standing waves in deflecting atomic
beams has been studied previously by various research
groups [24–27]. In these works, the atoms move at right
angles to the laser beams and, consequently, only spread-
ing of the atomic beam in the transverse direction is ob-
served. In contrast, we assume here that the atoms move
nearly, parallel to the laser beams and study the effects of
the pulsed standing wave on the velocity distribution of
the atomic beam. We show that with a suitable choice
of the field intensity and pulse duration each period
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Fig. 1. The standing-wave geometry used for studying the
atomic reflection.

of the standing-wave pattern acts as an elastic reflector for
the incoming atoms. As a potential application for such
a row of atom mirrors we consider reflection of thermal
atoms at normal incidence.

We start by introducing the theoretical model that is
used for the simulation of the atomic motion in the light
field. The forces exerted on the atoms are modeled by
an effective potential due to the adiabatic atom-photon
interactions. The calculations are done in the quasiclas-
sical approximation that neglects ~k-scale features in the
atomic distributions. This is realistic, since the total mo-
mentum transferred to the atoms in a pulsed laser field
is typically much larger than a single recoil momentum.
The resulting equations of motion for the atomic center of
mass are then used to determine the atomic momentum
distribution after interaction with a single laser pulse.

2 Atomic motion in a pulsed standing wave

In this section, we study the motion of a beam of two-level
atoms in a pulsed standing wave with a duration of several
nanoseconds. The standing wave is formed in the overlap
region of two counter-propagating laser beams, as shown
in Figure 1. The wave fronts of the cosine squared inten-
sity distribution are normal to the atomic beam, which is
directed along the x-axis. The period Λ of the standing-
wave pattern depends both on the wavelength λ of the
light field and on the angle θ between the laser beams ac-
cording to the relation Λ = λ/[2 sin(θ/2)]. The transverse
profile of the beams is taken to be square-shaped and their
intensity to be in a range of tens to hundreds of MW/cm2.

For coherent atom-photon interaction, the motion of
the atoms in the laser field can conveniently be described
by the dressed-atom approach [28,29]. In this approach,
the atom and the laser field are considered to form a com-
bined system and the resulting eigenstates of the total
Hamiltonian, the dressed states, are used to determine the
effects of the laser field on the atomic motion. In an un-
coupled basis, the eigenstates are bunched into manifolds
of two states with an energy separation of ~∆ within each
manifold, where ∆ is the detuning from the atomic res-
onance. When the atom-photon interaction is taken into
account, the energy separation becomes intensity depen-
dent. The energy shifts of the two dressed states within

each manifold are then

U(x, t) = ±1
2
~
√
∆2 +Ω(x, t)2. (1)

The Rabi frequency is defined as Ω(x, t) = µE(x, t)/~,
where µ is the dipole matrix element for the transition
and E(x, t) is the amplitude of the electromagnetic field.
If transitions between the different dressed states can be
neglected, the energy shift U(x, t) can be regarded as
an effective potential seen by the atomic center of mass
[28]. Atoms moving in a standing wave will thus experi-
ence a position dependent potential that in the case of a
large detuning is sinusoidal. The center-of-mass motion of
the atoms can then be determined by solving the scalar
Schrödinger equation with the effective potential describ-
ing the light forces. This model for the atomic motion is
valid, if ∆ >∼ Ω and if the laser field changes smoothly in
time, i.e., ∆ � 1/δt, where δt is the turn-on time of the
laser pulse [28,30]. In our calculations, we use a detuning
of ∆ = 5Ω0, where Ω0 is the Rabi frequency correspond-
ing to the amplitude of the standing wave at the peak of
the laser pulse. For the laser intensities considered here,
Ω0 is on the order of 1012 s−1. Since this is much larger
than both 1/δt for a smooth laser pulse of nanoseconds
duration and the Doppler shift caused by the atomic mo-
tion at velocities considered here, we can safely neglect
the nonadiabatic effects in our calculations.

To determine the atomic momentum distribution after
interaction with the pulsed standing wave it is convenient
to use the Wigner function representation for the atomic
center of mass [31]. In the case of a pulsed laser field, the
induced atomic momentum will be large as compared with
the single recoil momentum ~k. The calculation of the
atomic Wigner function f(x, p, t) can therefore be done in
the quasiclassical approximation, which neglects ~k-scale
features in the atomic distributions [32–34]. In this ap-
proximation, the equation of motion for the Wigner func-
tion simplifies to the classical Liouville equation(

∂

∂t
+

p

m

∂

∂x

)
f(x, p, t) =

∂U(x, t)
∂x

∂

∂p
f(x, p, t), (2)

where m is the mass of the atom and p is the center-
of-mass momentum. The momentum distribution of the
atoms after interaction with the light field can now be
found by solving the Wigner function for an appropriate
initial distribution and by integrating it over the position
space.

Equation (2) describes the motion of an atom in a
classical potential. Therefore, an alternative method to
calculate the final momentum distribution is to use the
classical equations of motion with the gradient of the effec-
tive potential representing the light forces. For the pulsed
standing wave the equations can be written as

dξ
dτ

= 4q

dq
dτ

= −Ω
2
0(τ)
4ε

sin(ξ)

[∆2 +Ω2(1 + cos(ξ))/2]1/2
· (3)
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Fig. 2. The final momentum distribution of a beam of sodium atoms with an initial momentum of 250 ~kΛ after interaction
with a pulsed standing wave. The distributions are calculated for a laser pulse with a fast turn on/off and 10 ns duration. The
initial atomic distribution is chosen to be spatially evenly distributed over the interaction region formed by a single period
of the standing-wave pattern. For (a) Ω0 = 3.4 × 1012 s−1, ∆ = 1.7 × 1013 s−1 (Tosc = 19 ns), (b) Ω0 = 2.95 × 1013 s−1,
∆ = 1.5 × 1014 s−1 (Tosc = 6.5 ns), and (c) Ω0 = 7× 1012 s−1, ∆ = 3.5× 1013 s−1 (Tosc = 13 ns). The wavelength of the light
field is 589 nm and the angle between the laser beams is 180 degrees, in all cases. The vertical axis gives the fraction of atoms
that end up in a final momentum state m~kΛ, where m is an integer.

Here we have used dimensionless units

τ = εt, q = p/(~kΛ), ξ = 2kΛx, (4)

where ε = ~k2
Λ/(2m) is the recoil energy in units of angu-

lar frequency and kΛ is the wave number of the standing
wave. The final momentum distribution can now be cal-
culated by using equations (3) to propagate the initial
distribution of the atoms over the interaction time T . In
the following calculations we use this method to deter-
mine the final momentum distributions. We assume that
the atoms are initially evenly distributed in the position
space. This allows us to limit the calculation to a single
period of the effective potential. The occupation of a par-
ticular final momentum state is determined by counting
the total number of atoms with a momentum correspond-
ing to that state at the end of the laser pulse.

We start the analysis of the pulsed standing-wave mir-
ror by applying harmonic approximation to the effective
potential, i.e., U = mω2

oscx
2/2. In this case, atoms will

go into an oscillatory motion around x = 0 with a period
of oscillation of Tosc = 2π/ωosc. For laser pulses with a
square-shaped temporal profile the oscillation period will
be constant. By using harmonic analysis it is then easy to
see that for interaction times satisfying

T =
(
n− 1

2

)
Tosc (n = 1, 2, ...), (5)

all the atoms will end up having a final momentum of
pf = −pi, regardless of their velocity and x-coordinate
value at the onset of the laser pulse [35]. With this choice
of the interaction time the harmonic potential acts as an
elastic reflector for the atoms. For red detuning the effec-
tive potential formed by a standing wave is nearly har-
monic in the regions around the antinodes. These regions
can, therefore, be utilized to elastically reflect the incom-

ing atoms by choosing the interaction time and the oscil-
lation period according to the relation (5). For a standing
wave the oscillation frequency can be written to the lowest
order as

ωosc = kΛvmax, (6)

where vmax = (2δU/m)−1/2 and δU is the depth of the
effective potential. The above relation shows that the os-
cillation period can be varied by changing the intensity or
the angle between the laser beams. Therefore, with a suit-
able choice of the parameter values the standing wave can
be made to act as a long row of independent atom mir-
rors. Of course, since the depth of the effective potential is
limited, the pulsed standing-wave mirror can be efficiently
used only for atoms with an initial velocity vi < vmax. At
higher initial velocities the standing wave will not have a
significant influence on the atomic motion.

In Figure 2, we show the final momentum distribu-
tion of a monoenergetic beam of sodium atoms after
interaction with a pulsed standing wave of 10 ns du-
ration. The atomic motion during the laser pulse was
calculated by solving equations (3) numerically. For the
sake of clarity, the calculations were done assuming laser
pulses with a fast turn on and off, i.e., I0(t) = I0 when
0 ≤ t ≤ T and I0(t) = 0 otherwise, where I0(t) is
the intensity modulation of the standing-wave pattern.
In all cases, the initial momentum of the atoms was
taken to be 250~kΛ. In Figure 2a the oscillation pe-
riod was chosen to be such that Tosc ≈ 2T (n = 1).
Clearly, with this choice a significant fraction of the
atoms are reflected nearly elastically. Roughly 20 % of
the atoms occupy the states around the momentum of
−250~kΛ ± 2σ, where σ = 10~kΛ is the FWHM of the
peak. The spreading of the atoms to other momentum
states is caused by the anharmonicity of the effective po-
tential. The anharmonicity effects also start to diminish
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the fraction of the elastically reflected atoms for initial
velocities of vi

>∼ Λ/2T . These effects will become more
pronounced at higher intensities at which the atoms un-
dergo several oscillations in the potential well during the
laser pulse. In Figure 2b, for example, the oscillation pe-
riod is Tosc ≈ 2T/3 (n = 2). The final momentum dis-
tribution is still peaked at the momentum of −250 ~kΛ,
but the fraction of the atoms around this momentum is
diminished to 10%. To increase the fraction of the elas-
tically reflected atoms, the effective potential should be
modified such that the quadratic part around the antin-
odes (nodes) covers a wider region of each period of the
standing-wave pattern. In the case of simple atoms, this
can be done for example with the aid of a bichromatic
standing wave that in some cases can produce a nearly
quadratic potential over the whole period [36].

In Figure 2c the oscillation period is chosen not to sat-
isfy condition (5) for the optimum performance of the mir-
ror. In this case, the atoms will spread to a wide range of
momentum states thus significantly reducing the fraction
of the elastically reflected atoms. However, the occupation
of the negative momentum states can still be reasonably
high compared with that of the positive momentum states.
We conclude that for such a non-optimum choice of the
oscillation period, the pulsed standing wave can function
as an inelastic reflector for atoms. In the next section, we
show how this kind of an inelastic reflector can be applied,
for example, to reflect thermal atoms and to modify their
final momentum distribution.

The above results show that a standing wave formed
by a laser pulse with a fast turn on and off can be used as
a row of independent atom mirrors. For a more realistic
pulse shape such as, e.g., a laser beam with a Gaussian
temporal profile the final momentum distributions will be
somewhat different as compared with the previous results.
At low intensities (Tosc

>∼ 2T ) the temporal profile of the
laser pulse does not have a significant influence on the
characteristics of the pulsed standing-wave mirror. With
a suitable choice of the field intensity and pulse duration,
a similar final momentum distribution as shown, e.g., in
Figure 2a can be obtained. The main difference is that the
optimum for elastic reflection occurs at a slightly higher
peak intensity of the laser field than was found in the case
of a square-type temporal profile of the laser pulse. This
is due to the fact that the maximum momentum that can
be transferred to the atoms increases more slowly as a
function of the field intensity for a smooth pulse profile
than is the case for the fast turn on of the field [34].

For higher laser intensities (Tosc < T ) the atomic dy-
namics in the standing wave depends more on the tem-
poral profile of the laser pulse. However, for atoms with
initial velocities of vi

<∼ Λ/2T the final momentum dis-
tributions are still not significantly changed when using a
smooth laser pulse. At higher initial velocities the anhar-
monicity of the effective potential starts to dominate the
atomic motion. In this case, the profile of the laser pulse
can greatly influence the shape of the final momentum
distributions. For example, in the case of a square-type
pulse profile the maximum initial velocity that can be re-
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Fig. 3. The differences in atomic motion in a pulsed standing
wave with two types of temporal profiles; (a) corresponds to
a laser pulse with a fast turn on/off and (b) to a laser pulse
with a Gaussian temporal profile. The curves represent atomic
trajectories for different initial velocities. The e−2 width of the
Gaussian profile and the length of the square-type laser pulse
are both 10 ns. The pulse areas are equal in both cases.

flected is highest for initial x-coordinate values close to
the antinodes of the standing wave (red detuning). When
moving closer to the node positions, the height of the po-
tential barrier decreases and, consequently, the maximum
reflected velocity also decreases. Thus, a standing wave
with a square-type pulse profile is most effective for the
reflection of atoms that start close to the antinodes. This
is not, however, the case when using a laser pulse with a
smooth temporal profile. In this case, fast atoms that are
located close to a node position can move to a neighbor-
ing period of the standing-wave pattern during the start
of the laser pulse. These atoms can then be reflected by
the neighboring atom mirror when the field intensity has
reached a level high enough to significantly affect their
motion. For example, in Figure 3 we show some typical
trajectories for atoms moving in a standing wave formed
by a laser pulse with a square or a Gaussian temporal
profile. The temporal e−2 width of the Gaussian pulse
and the duration of the square pulse are both 10 ns. The
curves represent atomic trajectories for different initial ve-
locities. In conclusion, the standing wave with a smooth
pulse profile reflects most efficiently atoms in certain ini-
tial velocity groups in contrast to the case of a square
profile laser pulse, which is most efficient for atoms that
start at close to the antinodes [37]. Since the atomic mo-
tion at initial velocities of vi

>∼ Λ/2T is anharmonic, the
fraction of the elastically reflected atoms will in general
be rather small. To optimize the elastic reflection the pe-
riod of the standing-wave pattern should be increased such
that Tosc ≈ 2T .

In the previous paragraphs we showed how a pulsed
standing wave can be used to reflect atoms with initial
kinetic energy lower than the depth of the effective po-
tential. At higher initial velocities, the maximum mo-
mentum that can be transferred to the atoms will be
inversely proportional to the initial velocity. Therefore,
only a small fraction of the potential energy of the stand-
ing wave can be transferred to kinetic energy of the fast
atoms. However, this situation can be changed by making
the standing-wave pattern move during the laser pulse.
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Fig. 4. The final momentum distribution of a beam of sodium
atoms with an initial momentum of 1500 ~kΛ after interaction
with a standing-wave pattern moving with a velocity of 30 m/s.
The distribution is calculated for a laser pulse with a fast turn
on/off and 10 ns duration. The initial atomic distribution is
chosen to be evenly distributed over the interaction region.
The laser intensity was chosen to give Tosc ≈ 2T . The period
of the standing-wave pattern is Λ = 294.5 nm.

This kind of a moving standing wave can be formed, for
example, by creating a small frequency difference ωδ for
the two counter-propagating laser beams. In this case, the
intensity distribution of the standing-wave pattern has the
form

I(ξ, τ) =
1
2
I0(τ) [1− cos(ξ − ωδτ/ε)] , (7)

i.e., the standing-wave pattern moves with a velocity of
vsw = ωδ/2kΛ. If the calculations are done in a coordinate
frame that moves with this velocity, it is easy to see that
the atomic motion can be determined by solving equa-
tions (3) with initial values q̃i = qi−mvsw/~kΛ. Therefore,
atoms with an initial velocity in the range of

vsw − vmax ≤ vi ≤ vsw + vmax (8)

experience the effects of the moving standing-wave pat-
tern just as atoms with vi ≤ vmax in the case of a sta-
tionary wave pattern. Now, however, the reflection takes
place with respect to the momentum state q = mvsw/~kΛ
instead of the q = 0 state. In this case, the energy that can
be transferred to the atoms approaches in magnitude the
depth of the modulation of the effective potential regard-
less of the initial velocity. This offers a possibility to use
the standing-wave mirror to efficiently manipulate atomic
motion at higher initial atomic velocities. As an example,
in Figure 4 we show the final momentum distribution of an
atomic beam with an initial momentum of 1500~kΛ after
interaction with a standing wave moving with a velocity
of 30 m/s (mvsw ≈ 1000~kΛ). The distribution was calcu-
lated using an oscillation period corresponding to the first
reflection optimum (Tosc = 2T ).

3 Reflection of thermal atoms

In this section, we consider the use of the pulsed standing-
wave mirror for the reflection of atoms from a thermal

beam. The initial velocity of the atoms in the x-direction is
taken to follow the Maxwell-Boltzmann distribution with
an average velocity of vave = 700 m/s. The final momen-
tum distribution of the reflected atoms is calculated both
for laser pulses with a fast turn on and turn off and with
a smooth (Gaussian) temporal profile. For the atomic pa-
rameters we use the values relevant for the sodium D2

transition.
The final momentum distribution of the reflected

atoms is shown in Figure 5 for a few values of the Rabi
frequency. The distributions were calculated using a laser
pulse with a square-type temporal profile of 10 ns length.
The vertical scale gives the fraction of atoms that end up
in a given final momentum state assuming that the ini-
tial thermal atomic distribution is evenly spread out over
a single period of the standing-wave pattern. The num-
ber of the reflected atoms in a realistic case can be ob-
tained by scaling the distributions with the total number
of atoms in a standing-wave period. The Rabi frequencies
are chosen to give an oscillation period on the order of
2T . For the sodium D2 transition (S = 25.4a2

0e
2 [38]) the

corresponding intensity of the laser field varies from sev-
eral tens to a few hundred MW/cm2. Such intensities can
be reached relatively easily with commercial pulsed dye
lasers. By examining the figures, one notices that the num-
ber of the reflected atoms does not change significantly in
the range of the Rabi frequencies considered. For example,
at an atomic beam density of 5 × 1011 atoms/cm3 and a
cross sectional beam area of 0.01 cm2 the total number of
the reflected atoms will be approximately 10×, 30× and
100× 103 atoms/cm at Rabi frequencies of 2×, 3.4× and
10× 1012 s−1, respectively. However, since the atomic dy-
namics in a pulsed standing wave is strongly dependent on
the ratio of the oscillation period to the interaction time,
the shape of the final momentum distribution depends on
the value of the Rabi frequency.

In Figure 5a, the Rabi frequency was chosen to give an
oscillation period that satisfies the first reflection condi-
tion (Tosc ≈ 2T ). For elastic reflection, the final momen-
tum distribution should then start from zero and increase
in value for the more negative momentum states. Since the
reflection by a pulsed standing-wave mirror includes an an-
harmonic contribution, the final momentum distribution
in Figure 5a contains some inelastically reflected atoms
even at the optimum choice of the parameter values. In
particular, the contribution of these inelastically reflected
atoms is observed in the low momentum states whose oc-
cupation would otherwise be very small. Also, since the
depth of the effective potential is limited, the momentum
of the reflected atoms cannot exceedmvmax/~kΛ. This cor-
responds to the most negative occupied momentum state
of the distribution in Figure 5a.

The distributions in Figures 5b and 5c have been cal-
culated for Rabi frequencies that correspond to a non-
optimum value of the oscillation period. In Figure 5b, the
Rabi frequency was chosen such that the reflected atoms
would be more evenly distributed in the momentum space.
If the effective potential was purely harmonic, the final
momentum of the atoms would depend only on the initial
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Fig. 5. The final momentum distribution of a thermal beam of sodium atoms after interaction with a pulsed standing wave. The
distributions are calculated using laser pulses with a fast turn on/off and a duration of 10 ns. The initial atomic distribution
is chosen to be evenly distributed over the interaction region formed by one period of the standing-wave pattern. For (a)
Ω0 = 3.4× 1012 s−1 and ∆ = 1.7× 1013 s−1 (Tosc ≈ 19 ns), (b) Ω0 = 1× 1013 s−1 and ∆ = 5× 1013 s−1 (Tosc ≈ 11 ns), and (c)
Ω0 = 2× 1012 s−1 and ∆ = 1× 1013 s−1 (Tosc ≈ 25 ns). The wavelength of the laser field is 589 nm and the angle between the
laser beams is 180 degrees, in all cases. The vertical axis gives the fraction of atoms of the initial thermal distribution that end
up in a final momentum state m~kΛ, where m is an integer.
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Fig. 6. The final momentum distribution of a thermal beam of sodium atoms after interaction with a pulsed standing wave.
The distributions are calculated using laser pulses with a Gaussian temporal profile. The e−2 width of the Gaussian profile is
10 ns. The initial atomic distribution is chosen to be evenly distributed over the interaction region formed by one period of the
standing-wave pattern. For (a) Ω0 = 7.7× 1012 s−1 and ∆ = 3.8 × 1013 s−1, (b) Ω0 = 2.4 × 1013 s−1 and ∆ = 1.2× 1014 s−1,
and (c) Ω0 = 4.6× 1013 s−1 and ∆ = 2.3× 1014 s−1. The wavelength of the laser field is 589 nm and the angle between the laser
beams is 180 degrees, in all cases. The vertical axis gives the fraction of atoms of the initial thermal distribution that end up
in a final momentum state m~kΛ, where m is an integer.

x-coordinate value of the atomic position for oscillation
periods satisfying Tosc = 2T/(n− 1/2). For this case, the
reflected atoms would be evenly distributed in momentum
states ranging from −mvmax to 0. Although the reflection
by a pulsed standing-wave mirror is not purely harmonic,
a fairly even final momentum distribution of atoms is pos-
sible, as indicated by Figure 5b (Tosc ≈ 4T/3). Finally, in
Figure 5c we show that with a suitable choice of the Rabi
frequency it is possible to reflect the atoms in such a way
that the occupation is highest around zero momentum.

Figure 6 shows the final momentum distribution of the
reflected atoms when using a laser pulse with a Gaussian

temporal profile given by

I0(t) = I0 exp(−8t2/T 2). (9)

In this case, T is the e−2 width of the pulse and I0 is the
amplitude of the intensity modulation of the standing-
wave pattern. The pulse area for the given profile is about
11% smaller than the area of a square pulse of the same
peak intensity. In Figure 6a, I0 was chosen such that
the fraction of the elastically reflected atoms is optimized
(Tosc ≈ 2T ). In this case, the temporal profile of the pulse
does not have a significant effect on the reflection dynam-
ics and the final momentum distribution turns out to be
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Fig. 7. The final momentum distribution of a thermal beam of sodium atoms after interaction with a moving standing wave.
The distributions are calculated using laser pulses with a Gaussian temporal profile. The e−2 width of the Gaussian profile is
10 ns. The intensity of the laser pulse corresponds to a Rabi frequency of Ω0 = 4.6× 1013 s−1 (∆ = 2.3× 1014 s−1), i.e., to the
second reflection optimum. In (a) vsw = 0 m/s and (b) in vsw = 35 m/s. The wavelength of the laser field is 589 nm and the
angle between the laser beams is 180 degrees. The vertical axis gives the fraction of the atoms of the initial thermal distribution
that end up in a final momentum state m~kΛ, where m is an integer.

similar to that in Figure 5a. The main difference is that
the first reflection optimum occurs at a slightly higher
peak intensity than was found in the case of a square-
profile laser pulse. At higher intensities (Tosc < T ), the
pulse profile will have a more significant influence on the
shape of the final momentum distributions. In Figure 6b,
I0 was increased to give Tosc ≈ T . In this case, the slow
atoms that move in the most harmonic part of the effec-
tive potential are transmitted and thus the low negative
momentum states are only slightly populated. However,
the standing wave can still reflect certain anharmonically
moving atoms which have a suitable initial velocity. These
atoms form the population concentration in the high nega-
tive momentum states of the final momentum distribution
shown in Figure 6b. Figure 6c corresponds to the second
reflection optimum (Tosc ≈ 2T/3) for the harmonically
moving atoms. In this case, the shape of the final momen-
tum distribution at low momentum states is again simi-
lar to that of Figure 5a and the anharmonically reflected
atoms have moved to higher negative momentum states.
At still higher intensities, the distribution acquires more
maxima which correspond to atoms that start at differ-
ent reflected initial velocity groups. Since the maxima are
located at high momentum states, we conclude that the
shape of the final momentum distribution is more difficult
to control when using a smooth laser pulse than was found
for the case of square-profile pulses.

The control on the final momentum distribution can be
improved by using the moving standing wave introduced
in Section 2. In this case, the atoms are reflected with
respect to the momentum state mvsw/~kΛ. Therefore, by
changing the velocity of the standing-wave pattern the
final momentum of the reflected atoms can be chosen ap-
propriately. In Figure 7 we compare the final momen-
tum distribution of the reflected atoms for the cases of
a stationary and a moving standing-wave pattern (vsw =
35 m/s). The field intensity was chosen to give Tosc ≈ 2T/3

for the harmonically moving atoms (n = 2). It is seen
that the position of the maximum occupation of the mo-
mentum states can be changed by varying the standing-
wave velocity. In particular, with a suitable choice of the
standing-wave velocity the occupation maximum can be
moved to zero momentum. Thus, the moving standing
wave can be used to generate slow atoms even when using
smooth laser pulses. The scheme of the moving standing
wave might, therefore, be interesting, for example, for gen-
eration of slow atoms in cases where the normal laser cool-
ing methods are inefficient. This could include multilevel
atoms or at somewhat higher intensities even molecules.
By applying a few moving standing-wave pulses in suc-
cession it might also be possible to transfer fast atoms or
molecules to low momentum states even at moderate laser
intensities.

4 Summary

Reflection of neutral atoms by a pulsed standing wave
with a duration in the nanosecond range was studied. The
effects of the laser field on the atomic motion were de-
scribed by the effective potential resulting from the adi-
abatic atom-photon interaction at large detunings. The
equations of motion for the atomic center of mass were
solved in the quasiclassical limit and the momentum dis-
tribution of the atoms was determined after interaction
with a single laser pulse. The results show, that with a
proper choice of the field intensity and pulse duration each
period of the standing-wave pattern functions as an inde-
pendent mirror for atoms with initial kinetic energy lower
than the depth of the effective potential. When using a
laser pulse with a fast turn on and turn off, the fraction
of the elastically reflected atoms was found to be more
than 20% for the first reflection optimum. This result will
not change considerably when using a more realistic pulse
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shape such as, e.g., a laser beam with a Gaussian temporal
profile. However, at higher laser intensities (Tosc < T ) the
pulse profile can have a significant influence on the reflec-
tion dynamics. For example, a pulsed standing wave with a
square-type temporal profile reflects most efficiently atoms
that start close to the antinodes of the standing wave (red
detuning). In contrast, when using a laser pulse with a
smooth temporal profile, the standing wave reflects most
efficiently atoms in certain initial velocity groups. To op-
timize the fraction of the elastically reflected atoms, the
period of the standing-wave pattern should be chosen such
that Tosc ≈ 2T .

The pulsed standing-wave mirror offers a few impor-
tant advantages as compared with the conventional atom
mirrors. The node separation of a standing-wave pattern
is typically less than 1µm. Thus, an interaction region
between the laser field and an atomic beam can readily
contain tens of thousands of the atom mirrors. Each of
them will provide the same dipole force to the atoms and
act in concert to allow manipulation of a large volume
of neutral atoms simultaneously with a single laser pulse.
In addition, when using pulsed lasers as the light source
the depth of the effective potential is high enough to al-
low reflection of an order of magnitude faster atoms as
compared with an atom mirror realized using a CW laser.
This together with the large interaction volume should
make the pulsed standing-wave mirror valuable for appli-
cations requring both strong interaction and insensitivity
to the details of the internal energy level structure of the
particles. The possible applications might include, for ex-
ample, large angle reflection of atomic beams and even
reflection of thermal atoms at normal incidence. We show
that with a moderately intense laser beam (several tens
of MW/cm2) tens of thousands of atoms can be reflected
from a thermal atomic beam by the mirror. Furthermore,
the momentum distribution of the reflected atoms can be
modified by changing the field intensity, the pulse dura-
tion or the period of the standing-wave pattern, while not
significantly affecting the number of the reflected atoms.

As a further improvement on the pulsed standing-wave
mirror, we propose to use a small frequency difference be-
tween the two counter-propagating laser beams to form
a moving standing-wave pattern. In this case, atoms are
reflected with respect to the atomic momentum that cor-
responds to the velocity of the standing-wave pattern.
Therefore, with a proper choice of the standing-wave ve-
locity, the energy that can be transferred to the atoms
approaches in magnitude the depth of the modulation of
the effective potential regardless of the initial velocity of
the atoms. This offers a possibility to use a pulsed standing
wave to manipulate atomic motion at high initial veloci-
ties. For example, by using a few moving standing-wave
pulses in succession, it might be possible to transfer atoms
with a velocity of a few hundreds of meters per second to
low final momentum states even with moderately intense
laser pulses. At higher intensities and by using far-off res-
onant interaction, this might even be a viable method to
slow down multilevel atoms and even molecules, for which
the conventional atom optical components are ineffective.
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14. P. Szriftgiser, D. Guéry-Odelin, M. Arndt, J. Dalibard,
Phys. Rev. Lett. 77, 4 (1996).

15. L. Cognet, V. Savalli, G.Zs.K. Horvath, D. Holleville, R.
Marani, N. Westbrook, C.I. Westbrook, A. Aspect, Phys.
Rev. Lett. 81, 5044 (1998).

16. S. Feron, J. Reinhardt, S. Le Boiteux, O. Gorceix, J.
Baudon, M. Ducloy, J. Robert, Ch. Miniatura, S. Nic
Chormaic, H. Haberland, V. Lorent, Opt. Commun. 102,
83 (1993).

17. T. Esslinger, M. Weidenmuler, A. Hemmerrich, T.W.
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